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Abstract

An extension of the restricted Delaunay-refinement algorithm for three-dimensional tetrahedral mesh generation is described, in
which an off-centre type point-placement scheme is utilised. It is shown that the use of generalised Steiner points, positioned
along edges in the associated Voronoi complex, typically leads to improvements in the overall size, quality and grading of the
resulting tetrahedral meshes. The new algorithm can be viewed as a Frontal-Delaunay approach – a hybridisation of conventional
Delaunay-refinement and advancing-front techniques, in which new vertices are positioned to satisfy both element size- and shape-
constraints. The new method is shown to inherit many of the best features of classical Delaunay-refinement and advancing-front
type algorithms, combining good practical performance with theoretical robustness. Experimental comparisons show that the new
method outperforms classical Delaunay-refinement techniques for a number of three-dimensional benchmark problems.
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1. Introduction

Three-dimensional mesh generation is a key component in a variety of computational modelling and simulation
tasks, including problems in computational engineering, numerical modelling, computer graphics and animation.
Given a general volumetric domain, described by a piecewise smooth surface Σ ⊂ R3 enclosing a volume Ω, the
tetrahedral meshing problem consists of tessellating both Σ and Ω into a mesh of non-overlapping triangular and tetra-
hedral elements, such that all geometrical, topological and user-defined constraints are satisfied. It is typical to require
that such tessellations: (i) are conforming – ensuring that the triangulation of Σ is embedded within the tessellation of
Ω, (ii) include elements of high shape-quality, (iii) provide good geometrical and topological approximations to the
underlying surface Σ and volume Ω, and (iv) satisfy a set of user-specified sizing constraints. While various strategies
have been presented to solve this problem in the past, a new algorithm is developed in this study with the aim of
improving the quality of the resulting tessellations. This new tetrahedral refinement algorithm is an extension of the
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restricted Frontal-Delaunay surface meshing algorithm presented by the author in [1,2] to support the generation of
quality tetrahedral meshes in bounded volumetric domains.

1.1. Related work

Three-dimensional mesh generation is a broad and evolving area of research. Many successful algorithms employ
one of two approaches: (i) an advancing-front technique [3–6], in which meshes are generated by incrementally
positioning new vertices and elements adjacent to a set of frontal-facets, or (ii) a Delaunay-based strategy [7–16],
based on the progressive refinement of a coarse initial Delaunay triangulation.

Delaunay-refinement schemes are top-down algorithms – based on the incremental refinement of a bounding De-
launay tessellation. At each step of the algorithm, elements that violate a set of constraints are identified and the worst
offending elements are eliminated. Elimination is achieved through the insertion of additional Steiner-vertices located
at the refinement points of the associated elements. The original two-dimensional Delaunay-refinement methods of
Chew [7] and Ruppert [8,9] have since given rise to methods for fully three-dimensional refinement [11] and the re-
finement of embedded surfaces [14,15]. This study is focused on use of the so-called restricted Delaunay-refinement
method [13,16,17] which provides a framework for the approximation of volumetric domains via Delaunay sub-
complexes. It has been shown [13–15,18] that if the domain is sampled in a sufficiently-dense and well-distributed
fashion, the restricted Delaunay sub-complexes offer an accurate piecewise approximation of the volume Ω and its
bounding surface Σ, incorporating guarantees of geometrical and topological fidelity. One of the key advantages of
a restricted Delaunay refinement approach is that the surface and volume of the domain are sampled in a unified
manner [16] – obviating non-trivial difficulties associated with the construction of constrained tetrahedral complexes
conforming to a given set of surface constraints [19,20].

Advancing-front schemes, in contrast, are bottom-up algorithms – constructing meshes in a local fashion through
the incremental addition of new vertices and elements adjacent to a set of frontal-facets. Unlike Delaunay-based
methods, which maintain a tessellation of the full domain throughout, frontal schemes seek to assemble the full
tessellation progressively – with new elements inserted to gradually ‘fill-in’ the interior of the domain. In three-
dimensions, such a process is known to be non-robust, due to the existence of polyhedral cavities that do not support
conforming tetrahedralisations. Nonetheless, it is known that when optimised advancing-front schemes do converge,
they often produce tessellations of significantly improved quality compared to Delaunay-based methods [4,5].

In this study, a new Frontal-Delaunay algorithm is presented which seeks to combine the benefits of classical
Delaunay-refinement and advancing-front type approaches. The new algorithm is designed to produce smooth, high-
quality triangulations consistent with advancing-front type schemes, whilst also inheriting the theoretical robustness
of Delaunay-based techniques. It is expected that this new algorithm may be of interest to users who place a high pre-
mium on mesh quality, including those operating in the areas of computational engineering and numerical simulation.

An overview of an existing state-of-the-art restricted Delaunay-refinement scheme is presented in Section 2. The
new Frontal-Delaunay algorithm is presented in Section 3, focusing in-detail on the new off-centre point-placement
schemes for both surface- and volume-based refinement operations. In Section 6, an experimental comparison between
the conventional Delaunay-refinement and the proposed Frontal-Delaunay schemes is presented, contrasting output
quality and computational performance.

2. Restricted Delaunay-refinement techniques

Three-dimensional restricted Delaunay-refinement algorithms operate by incrementally introducing new Steiner
vertices into an initially coarse Delaunay tessellation of the volume to be meshed. Such methods typically also seek
to build a high-quality triangulation of the bounding surface of the domain, embedded within the volumetric complex.
Contrary to typical planar algorithms [7–9], such refinement schemes are designed not only to ensure that the resulting
mesh satisfies element shape- and size-constraints, but that the geometry and topology of the mesh itself is an accurate
piecewise approximation to both the volumetric domain Ω and its bounding surface Σ.

The meshing algorithms presented in this study are based on the so-called restricted Delaunay surface and volume
tessellations Del |Σ(X) and Del |Ω(X) – triangular and tetrahedral sub-complexes of the full-dimensional Delaunay
tessellation Del(X). Specifically, the restricted surface triangulation Del |Σ(X) ⊆ Del(X) contains the set of 2-simplexes
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Fig. 1. Restricted tessellations for a curved domain in R2, showing (i) the curve Σ and enclosed area Ω, (ii) the Delaunay tessellation Del(X) and
Voronoi diagram Vor(X), and (iii) the restricted curve and area tessellations Del |Σ(X) and Del |Ω(X). In three-dimensions, the restricted surface
triangulation Del |Σ(X) is a triangular complex that covers the surface Σ. The restricted volume tessellation Del |Ω(X) is a tetrahedral complex that
fills the volume Ω.

(i) (ii) (iii)

that approximate the bounding surface Σ, while the restricted volume tessellation Del |Ω(X) ⊆ Del(X) contains the set
of 3-simplexes approximating the volumetric domain Ω. An extensive overview of these concepts is provided in
[13,16,18]. In this study, the following formalism is used throughout:

Nomenclature

Ω The input domain – a bounded volume in R3 (See Figure 1(i));
Σ The bounding surface Σ = ∂Ω (See Figure 1(i));
X The current set of points added to the tessellation;
Del(X) The Delaunay triangulation of the points X;
Vor(X) The Voronoi complex associated with the points X;
Del |Σ(X) A sub-complex of the Delaunay tessellation Del(X), restricted to the surface Σ. Del |Σ(X) contains the

set of 2-simplexes f ∈ Del(X) whose dual Voronoi edges ve ∈ Vor(X) intersect the surface Σ (See
Figure 1(ii)–1(iii));

Del |Ω(X) A sub-complex of the Delaunay tessellation Del(X), restricted to the volume Ω. Del |Ω(X) contains the
set of 3-simplexes τ ∈ Del(X) whose dual Voronoi vertices (circumcentres) vp ∈ Vor(X) lie within the
volume Ω (See Figure 1(ii)–1(iii));

SDB( f ) The surface Delaunay ball B(c, r) associated with a 2-simplex f ∈ Del |Σ(X). Surface balls are centred
at intersections between the associated bipolar Voronoi edge ve ∈ Vor(X) and the surface Σ, such that
c = ve ∩ Σ (See Figure 2);

ρ(τ) The radius-edge ratio for a simplex τ. Defined as the ratio of the radius of the circumball of τ to its
shortest edge;

ε( f ) The surface discretisation error associated with a 2-simplex f ∈ Del |Σ(X). Defined as the length from
the centre of SDB( f ) to the centre of the diametric ball of f (See Figure 2(ii));

h̄(x) The mesh size function. A function f (x) : R3 → R+ defining the desired edge length at all points
x ∈ Ω;

v(τ) The volume-length ratio associated with a given element τ. Defined as v(τ) = V/‖e‖3rms, where V is the
signed volume of τ and ‖e‖rms is the root-mean-square edge length. The volume-length ratio is a robust
measure of element quality.

The reader is referred to [18] for formal definitions and discussions.

2.1. An existing algorithm

The development of provably-good restricted Delaunay-refinement schemes for three-dimensional mesh generation
is an ongoing area of research. An algorithm for the meshing of volumes enclosed by smooth 2-manifold surfaces
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Fig. 2. The surface Delaunay ball (SDB) for a restricted 2-face f ∈ Del |Σ(X), showing (i) placement of the surface ball at the intersection of the
associated dual edge v f ∈ Vor(X) and the surface Σ, and (ii) associated SDB radius r( f ) and surface discretisation error ε( f ).

(i) (ii)

embedded in R3 is presented here, adapted largely from the methods presented by Cheng, Dey and Shewchuk in
[18], which expand on previous techniques due to Cheng, Dey and Levine [21]. Oudot, Rineaua and Yvinec present
similar algorithms in [22]. This method is largely equivalent to that of the CGALMESH algorithm, available as part of
the CGAL package, and summarised by Jamin, Alliez, Yvinec and Boissonnat in [16]. The algorithm presented in this
section is referred to as the conventional Delaunay-refinement approach, due to its direct use of circumcentre-based
point-placement schemes.

As per Jamin et al. [16], the development of the conventional Delaunay-refinement algorithm is geometry-agnostic,
being independent of the specific representation used for the underlying geometry Ω. It is required only that the
geometry support a so-called oracle predicate that can be used to (i) compute the intersection of a given line segment
with the surface Σ, and (ii) determine whether a given point p lies within the volume Ω. The Frontal-Delaunay
algorithm presented in Section 3, additionally requires that the oracle compute intersections between a disk of a given
radius and the surface Σ. Such constructions will be discussed in further detail in Section 3. While a broad class of
geometry descriptions are supported at the theoretical level, in this study attention is restricted to the development
of so-called remeshing operations, in which the domains Ω are specified in terms of bounding 2-manifold triangular
complexes P. This restriction is made for convenience only – facilitating the construction of simple oracle predicates.
Future work is intended to focus on more general descriptions, including domains defined by implicit and analytic
functions, in addition to those that contain sharp features.

Following Jamin et al. [16], the Delaunay-refinement algorithm takes as input a volumetric domain Ω, described
by an enclosing 2-manifold surface Σ ⊆ R3, an upper bound on the allowable element radius-edge ratio ρ̄, a mesh size
function h̄(x) defined at all points enclosed by the surface Σ and an upper bound on the allowable surface discretisation
error ε̄(x). The algorithm returns a triangulation T |Σ of the surface Σ, where T |Σ is a restricted Delaunay surface
triangulation of a point-wise sampling X ∈ Σ, such that T |Σ = Del |Σ(X). Additionally, the algorithm also returns
a triangulation T |Ω of the enclosed volume Ω, where T |Ω is a restricted Delaunay volumetric triangulation T |Ω =

Del |Ω(X). Both Del |Σ(X) and Del |Ω(X) are sub-complexes of the full-dimensional Delaunay tessellation Del(X).
Note that Del |Σ(X) is a triangular complex, while Del |Ω(X) and Del(X) are tetrahedral complexes. The Delaunay-
refinement algorithm is summarised in Algorithm 2.1.

Cheng, Dey and Shewchuk [18] have analysed a similar restricted Delaunay-refinement algorithm and have shown
that it guarantees: (i) that all elements in the volumetric tessellation τ ∈ T |Ω satisfy constraints on both the element
shape and size, such that ρ(τ) ≤ ρ̄, and h(τ) ≤ h̄(xτ), (ii) that all elements in the embedded surface triangulation
f ∈ T |Σ are guaranteed to satisfy similar element shape and size constraints in addition to an upper bound on the
allowable surface discretisation error, such that ε( f ) ≤ ε̄(x f ), and (iii) that the surface triangulation is topologically-
consistent, ensuring that Del |Σ(X) is uniformly 2-manifold. Making use of properties of the restricted Delaunay
tessellation [17], it is also known that the triangulations T |Σ and T |Ω are good piecewise linear approximations to the
bounding surface Σ and volume Ω, provided that the magnitude of the mesh size function h̄(x) is sufficiently small.
Under such conditions it is known that the triangulations T |Σ and T |Ω are homeomorphic to the underlying surface
and volume definitions Σ and Ω, and that the geometric properties of T |Σ and T |Ω converge toward the true normals,
curvature, area and volume of the surface Σ and volume Ω as h̄(x)→ 0.

The Delaunay-refinement algorithm begins by creating an initial point-wise sampling of the surface X ∈ Σ. Ex-
ploiting the discrete representation available for Σ, the initial sampling is obtained in this study as a well-distributed
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subset of the existing vertices Y ∈ P, where P is the polyhedral representation of the surface Σ. In the next step, the
initial triangulation objects are formed. In this study, the full-dimensional Delaunay tessellation, Del(X), is built using
an incremental Delaunay triangulation algorithm, based on the Bowyer-Watson technique [23]. The restricted surface
and volumetric triangulations, Del |Σ(X) and Del |Ω(X), are derived from Del(X) by explicitly testing for intersections
between the associated Voronoi diagram Vor(X) and the surface Σ. These queries are computed efficiently by storing
the surface definition P in an aabb-tree [24]. The main loop of the algorithm proceeds to incrementally refine any
2- or 3-simplexes found to be in violation of one or more constraints. Specifically, in step 3, any 2-simplex found
to violate the set of radius-edge, mesh-size or surface-error constraints is refined – through the introduction of a new
Steiner point c f located at the centre of its surface ball B(c f , r). In step 4, the topological consistency of the surface
triangulation is enforced, ensuring that the set of 2-simplexes Fp ∈ Del |Σ(X) adjacent to each vertex p ∈ X forms a
locally 2-manifold surface, known as a topological-disk. Vertices adjacent to non-manifold connections trigger addi-
tional refinement, with the centres c f of the largest adjacent surface balls B(c f , r) associated with the triangles f ∈ Fp

inserted as new Steiner points.
Following the initial refinement of the surface triangulation, elements in the volume tessellation Del |Ω(X) are

refined. In step 5, any 3-simplex found to violate the set of radius-edge or mesh-size constraints is conditionally refined
– through the introduction of a new Steiner vertex cτ located at its circumcentre. The insertion of cτ is dependent on
several additional constraints. Firstly, in step 5a, if cτ is found to lie within the surface ball B(c f , r) of an existing
surface facet, that facet is instead refined, through the insertion of a Steiner point located at the centre of its surface ball
c f . This process is similar to the standard edge-encroachment scheme used in Ruppert’s two-dimensional refinement
algorithm. Secondly, in step 5b, if the insertion of cτ is found to modify the restricted triangulation Del |Σ(X), the
insertion is deferred onto an adjacent surface facet. Specifically, the point cτ is deleted from Del(X) and a new Steiner
vertex c f , corresponding to the centre of the largest adjacent surface ball, is inserted instead. This process ensures that
elements in the surface triangulation Del |Σ(X) remain unconnected to interior vertices p , Σ.

The incremental refinement process continues until all radius-edge, mesh-size, surface-error and topological con-
straints are satisfied for all elements in both Del |Σ(X) and Del |Ω(X). The refinement process is priority scheduled,
with triangles f ∈ Del |Σ(X) and tetrahedrons τ ∈ Del |Ω(X) ordered according to their radius-edge ratios ρ( f ) and
ρ(τ), ensuring that the element with the worst ratio is refined at each iteration. Mesh-size constraints are applied with
respect to the circumscribing balls associated with each element. Specifically, the mean element sizes h( f ) =

√
3r f

and h(τ) =
√

8/3rτ are used throughout, where h( f ) and h(τ) denote the size associated with triangles and tetrahedrons
respectively. The scalar coefficients represent mappings between circumball radii and edge length for equilateral ele-
ments. In this study, mesh-size constraints are implemented as h( f ) ≤ αh̄(x f ) and h(τ) ≤ αh̄(xτ), where α = 4/3 is a
constant factor designed to ensure that the mean element size does not, on average, undershoot the desired target size.
The mesh-size functions h̄(x f ) and h̄(x f ) are evaluated at the centres of the associated element circumballs.

3. Restricted Frontal-Delaunay Methods

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refinement techniques, in which
a Delaunay triangulation is used to define the topology of a mesh while new Steiner vertices are inserted in a manner
consistent with advancing-front methodologies. In practice, such techniques have been observed to produce very
high-quality meshes, inheriting the smooth, semi-structured vertex placement of pure advancing-front methods and
the optimal mesh topology of Delaunay-based approaches. Extending the development of Frontal-Delaunay type
methods due to, for example, Üngör and Erten [25], Rebay [26], Mavriplis [27], Frey, Borouchaki and George [28],
and Remacle et al. [29], the new algorithm presented in this study is based on a combination of advancing-front and
Delaunay-type point-placement rules. This strategy is designed to leverage the improved quality of advancing-front
type approaches while preserving the theoretical robustness and guarantees associated with the Delaunay-refinement
algorithm presented in Section 2.

3.1. Off-centres

The new Frontal-Delaunay algorithm is based primarily on ideas introduced by Rebay, who, in [26], developed
a two-dimensional Frontal-Delaunay algorithm in which new vertices are positioned along edges of the associated
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Algorithm 2.1 Three-dimensional restricted Delaunay-refinement

1: function DelaunayVolume(Σ,Ω, ρ̄, ε̄(x), h̄(x),T |Σ,T |Ω)
2: Form an initial point-wise sampling X ∈ Σ such that X is well-distributed on Σ. Com-

pute the Delaunay tessellation Del(X) and the restricted surface and volume tessellations
Del |Σ(X) and Del |Ω(X).

3: If some 2-simplex f ∈ Del |Σ(X) violates BadSimplex2( f ), form the Steiner point c f as-
sociated with f , insert c f into X, update the tessellations Del(X), Del |Σ(X) and Del |Ω(X)
and go to step 3.

4: For all vertices p ∈ X compute cp ←TopoDisk(p). If c is non-null, insert cp into X,
update the tessellations Del(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

5: If some 3-simplex τ ∈ Del |Ω(X) violates BadSimplex3(τ), form the Steiner point cτ asso-
ciated with τ.

(a) If the point cτ lies within a surface ball B(c f , r) associated with some 2-face f ∈
Del |Σ(X), insert c f into X instead, update the tessellations Del(X), Del |Σ(X) and
Del |Ω(X) and go to step 3.

(b) Insert cτ into X. If cτ changes the surface triangulation Del |Σ(X), such that cτ ∈ f
for some Del |Σ(X), find the largest adjacent surface ball B(c f , r), delete cτ from X
and insert c f into X. Update the tessellations Del(X), Del |Σ(X) and Del |Ω(X) and
go to step 3.

(c) Go to step 5.
6: Return the restricted Delaunay surface and volume tessellations Del |Σ(X) and Del |Ω(X).
7: end function
1: function TopoDisk(p) . {topological disk about p}
2: Find the set of 2-simplexes Fp ∈ Del |Σ(X) adjacent to the vertex p.
3: If Fp is empty or a topological disk, return null.
4: Otherwise, find the 2-simplex f ∈ Fp that maximises the size of the associated surface

Delaunay ball B(c f , r). Return c f .
5: end function
1: function BadSimplex2( f ) . {termination criteria}
2: return (ρ( f ) > ρ̄) or (ε( f ) > ε̄(x f )) or (h( f ) > h̄(x f ))
3: end function
1: function BadSimplex3(τ) . {termination criteria}
2: return (ρ(τ) > ρ̄) or (h(τ) > h̄(xτ))
3: end function

Voronoi diagram. Rebay showed that new vertices can be positioned on Vor(X) according to a mesh size function
h̄(x) – a strategy consistent with conventional advancing-front techniques. While his algorithm maintains a Delau-
nay triangulation T = Del(X) of the current vertices, it is still fundamentally an advancing-front scheme – without
guarantees on element shape quality. Rebay reported that his scheme produced very high-quality output in prac-
tice, typically outperforming conventional Delaunay-refinement techniques. Similar methods have been pursued by
other authors, including Üngör and Erten, who, in [30], have shown that by carefully positioning refinement points
on the Voronoi diagram, a set of generalised Steiner vertices for two-dimensional Delaunay-refinement can be re-
alised. Üngör has shown that the theoretical guarantees associated with standard Delaunay-refinement techniques
extend to such methods, offering the prospect of improved ‘provably-good’ mesh generation techniques. The use of
so-called generalised off-centre Delaunay-refinement strategies has also been explored by Chernikov, Chrisochoides
and Foteinos in [31,32], in which Steiner points are positioned within a set of selection-balls adjacent to element cir-
cumcentres. In [31], Chernikov and Chrisochoides show that a family of ‘provably-good’ generalised two- and three-
dimensional Delaunay-refinement schemes exist, and can be realised via the specification of appropriate selection-ball
radii parameters.

In this study, a generalisation of the ideas introduced by Rebay and Üngör is formulated for the three-dimensional
meshing problem – using off-centre Steiner vertices to simulate the vertex placement strategy of an advancing-front
approach, while maintaining the framework of a restricted Delaunay-refinement technique. The aim of such a strategy
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Fig. 3. Off-centre Steiner points for surface refinement, showing (i) the surface ball associated with a 2-face f ∈ Del |Σ(X), (ii) the planeV aligned
with the local Voronoi face v f ∈ Vor(X), (iii) placement of the size-optimal point c(2) to satisfy local edge-length constraints.

(i) (ii) (iii)

is to recover the high element quality and smooth point-placement behaviour generated by frontal methods, while
inheriting the theoretical guarantees and robustness of Delaunay-refinement techniques. The new Frontal-Delaunay
algorithm is an extension of the conventional restricted Delaunay-refinement algorithm presented in Section 2, mod-
ified to use ‘off-centre’ rather than circumcentre-based point-placement strategies. The set of constraints satisfied
by the Frontal-Delaunay algorithm is identical to those incorporated in the restricted Delaunay-refinement scheme,
with upper bounds on the radius-edge ratio ρ̄, surface discretisation error ε̄(x f ), element size h̄(x f ) and topological
consistency all required to be satisfied for convergence. The Frontal-Delaunay scheme follows Algorithm 2.1.

3.2. Point-placement strategy (surface refinement)

The ‘off-centre’ point-placement strategy used to refine surface facets f ∈ Del |Σ(X) is an evolution of the methods
presented previously in [1,2] for surface mesh generation. Two candidate Steiner vertices are considered. Type I
vertices, c(1), are equivalent to conventional element circumcentres (positioned at the centre of the associated surface
Delaunay balls), and are used to satisfy constraints on the element radius-edge ratios. Type II vertices, c(2), are so-
called size-optimal points, designed to satisfy element sizing constraints in a locally optimal fashion. Given a refinable
2-simplex f ∈ Del |Σ(X), the Type II vertex c(2) is positioned at an intersection of the surface Σ and a planeV, where
V is aligned with the local face of the Voronoi complex v f ∈ Vor(X) associated with the short frontal edge e0 ∈ f .
The vertex c(2) is positioned such that it forms an isosceles triangle candidate σ about the frontal edge e0, such that
its size h(σ) satisfies local constraints. Specifically, the altitude of σ is computed from local mesh-size information,
such that

aσ = min
((

h̄2
σ − ‖

1
2 e0‖

2
)

1
2 ,
√

3/2 h̄σ
)
, h̄σ = 1

2

(
h̄(m1) + h̄(m2)

)
(1)

where the mi’s are the edge midpoints and
√

3/2 h̄σ is the altitude for an ‘ideal’ element. The position of the point c(2)

is calculated by computing the intersection of the surface Σ with a circle of radius aσ, centred at the midpoint of the
frontal edge e0 ∈ f and inscribed on the plane V. For non-uniform h̄(x), expressions for the position of the point
c(2) are weakly non-linear, and an iterative procedure is used to obtain an approximate solution. The positioning of
size-optimal Type II Steiner vertices for surface facets is illustrated in Figure 3.

3.3. Point-placement strategy (volume refinement)

A similar point-placement strategy is employed for the refinement of tetrahedral elements, consisting of the place-
ment of a pair of candidate Steiner vertices. Consistent with previous discussions, Type I vertices, c(1), are equivalent
to conventional element circumcentres, and are used to satisfy constraints on element radius-edge ratios. Type II ver-
tices, c(2), are designed to satisfy element sizing constraints in a locally optimal fashion. Given a refinable 3-simplex
τ ∈ Del |Ω(X), the Type II vertex c(2) is positioned along the Voronoi edge segment v f ∈ Vor(X) associated with the
small frontal 2-face f0 ∈ τ. The vertex c(2) is positioned such that it forms an isosceles tetrahedron candidate σ about
the frontal face f0, such that its size h(σ) satisfies local mesh-size constraints. Given that Del |Ω(X) is Delaunay, a
number of important properties regarding the Voronoi segment v f are known, including, firstly, that v f is orthogonal
to f0, and, secondly, that v f passes through the centre of the diametric ball B(c0, r0) associated with f0. The altitude
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Fig. 4. Placement of off-centre Steiner points in the volume Ω, showing (i) the local edge ve ∈ Vor(X) of the Voronoi diagram associated with the
small face f0 ∈ τ, and (ii) placement of the size-optimal vertex c(2), such that local size constraints h̄(xτ) are enforced.

(i) (ii)

of the tetrahedron σ is calculated using local mesh-size information, such that

aσ = min
((

h̄2
σ − r2

0

)
1
2 ,
√

6/3 h̄σ
)
, h̄σ = 1

3

(
h̄(m1) + h̄(m2) + h̄(m3)

)
(2)

where the mi’s are the edge midpoints and
√

6/3 h̄σ is the altitude for an ‘ideal’ element. The position of the point c(2)

is computed by projection along the vector v f , such that c(2) = c0 + aσ v̂. An iterative procedure is used resolve the
resulting non-linear expressions. The positioning of size-optimal Type II Steiner vertices for tetrahedral elements is
illustrated in Figure 4.

3.4. Point-placement strategy (off-centre selection)

Given the Type I and Type II off-centres c(1) and c(2) for surface and volume elements, the positions of the associated
refinement points c f and cτ are calculated. These points are selected to satisfy the limiting local constraints, setting

c f =

 c(2)
f , if

(
d(2)

f ≤ d(1)
f

)
and

(
d(2)

f ≥
1
2‖e0‖

)
,

c(1)
f , otherwise

and cτ =

 c(2)
τ , if

(
d(2)
τ ≤ d(1)

τ

)
and

(
d(2)
τ ≥ r0

)
,

c(1)
τ , otherwise

(3)

where the d(i) = ‖c(i) − c0‖ are distances from the centre of the frontal facet to the Type I and Type II off-centres,
respectively. This cascading selection criteria is designed to ensure that the refinement scheme smoothly degenerates
to that of a conventional circumcentre-based Delaunay-refinement strategy in limiting cases, while using locally shape-
optimal points where possible. Specifically, these constraints guarantee that the refinement points for both surface and
volume elements lie within a ‘safe’ region – being positioned on an adjacent sub-face of the Voronoi complex and
bound between the circumcentre of the element itself and the diametric ball of the associated frontal facet. Note that
when element size is sufficiently small with respect to the local mesh-size function, the refinement points reduce to
element circumcentres in all cases.

3.5. Refinement order

In addition to the use of ‘off-centre’ point-placement schemes, the Frontal-Delaunay algorithm also introduces
changes to the order in which elements are refined. To better mimic the behaviour of an advancing-front type method,
elements are refined only if they are adjacent to an existing ‘frontal’ entity. In the case of surface facets f ∈ Del |Σ(X),
the frontal edge e0 ∈ f must be shared by at least one adjacent facet f j ∈ Del |Σ(X) that is ‘converged’ – satisfying
its associated radius-edge, mesh-size and surface-error constraints. In the case of interior tetrahedral elements τ ∈
Del |Ω(X), the frontal face f0 ∈ τ must either be a converged surface facet f j ∈ Del |Σ(X) or be shared by an adjacent
tetrahedron τ j ∈ Del |Ω(X) that satisfies its associated radius-edge and mesh-size constraints. The idea of defining
‘frontal’ entities as a dynamic boundary between converged and un-converged elements in the mesh is a common
feature of Frontal-Delaunay algorithms, with similar approaches presented in, for example, [26–29].
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3.6. Convergence guarantees and robustness

The new off-centre point-placement schemes are derived by considering the fundamental properties associated
with the underlying Voronoi diagram. Importantly, by constraining new Steiner vertices to lie along the sub-faces
of Vor(X), it is guaranteed that the distribution of mesh vertices remains well-separated throughout the refinement
process. This behaviour ensures that the algorithm does not create arbitrarily short edges. For the sake of brevity,
a full proof of termination or correctness is not included here, but it is important to note that constraints on element
radius-edge ratios ρ( f ), element size h (x), surface discretisation error ε( f ) and topological consistency are satisfied by
definition, provided that termination of the algorithm is achieved in practice. The development of a suitable theoretical
model for the new Frontal-Delaunay algorithm is the subject of a forthcoming publication.

4. Mesh-size functions

The construction of high-quality mesh-size functions is an important aspect of the restricted Delaunay-refinement
and Frontal-Delaunay algorithms presented previously. A good mesh-size function h̄(x) incorporates sizing constraints
imposed by both the user and the geometry of the domain to be meshed. The construction of high-quality mesh-size
functions is a detailed process, and in-depth discussions are not presented here as a result. In this study, mesh-size
estimates are computed using an approximation of the medial axis of the domain Ω, following the methods of Amenta
et al. [33] and Dey and Zhao [34]. A smooth mesh-size function is subsequently obtained using a variation of the
gradient-limiting approach of Persson [35]. Extended discussions, detailing the formation of high-quality mesh-size
functions for three-dimensional domains are presented in [1,2].

5. Sliver suppression

Slivers are a class of low-quality tetrahedral elements that occur in three-dimensional Delaunay tessellations.
Consisting of four vertices positioned in a thin ‘kite’-like configuration, sliver elements are typically of very low
shape-quality – possessing pathologically small dihedral angles, but relatively small radius-edge ratios. Due to these
characteristics, sliver elements are typically not eliminated by standard Delaunay-based refinement schemes. Both
the Delaunay-refinement and Frontal-Delaunay algorithms presented previously are susceptible to the generation of
slivers. Various strategies designed to remove sliver elements are known to exist, including non-linear optimisation
methods based on sliver-exudation [40] and topological-optimisation [41]. In this study, a simple method for the
suppression of sliver elements is employed, in which slivers are eliminated through additional refinement. Following
[36], any tetrahedron τi ∈ Del |Ω(X) with a small volume-length ratio v(τi) ≤ v̄ is marked for refinement, where v̄ is
a user-defined lower-bound on element volume-length ratios. Previous studies [36,37] have shown that this modified
refinement algorithm is convergent for v̄ ≤ 1/3. Noting that the volume-length ratio is a robust measure of element
quality, known to detect all classes of low-quality tetrahedrons, the resulting meshes are of guaranteed quality, with
bounded element dihedral angles and aspect ratios. Both the Delaunay-refinement and Frontal-Delaunay algorithms
presented previously were modified to impose bounds on element volume-length ratios, meaning that both algorithms
presented in this study satisfy bounds on (i) element radius-edge and volume-length ratios, (ii) element size, (iii)
surface discretisation error, and (iv) topological consistency.

6. Results and discussion

The performance of the Delaunay-refinement and Frontal-Delaunay surface meshing algorithms presented in Sec-
tions 2 and 3 was investigated experimentally, with both techniques used to mesh a series of benchmark problems.
Both the Frontal-Delaunay and Delaunay-refinement algorithms were implemented, allowing the performance and
output of the two techniques to be compared side-by-side. Due to similarities in the overall algorithmic structure, a
common code-base was used, with the algorithms differing only in the type of Steiner vertices inserted, as per the
discussions outlined in Section 3. Care was taken to ensure that both methods were implemented in a consistent
fashion, allowing unbiased comparisons to be made between the algorithms without needing to account for systemic
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Fig. 5. Meshes for the ELEPHANT test-case, showing output for the JGSW-FD and CGAL-DR algorithms. Detailed mesh statistics are shown including
normalised histograms of elements volume-length ratios, dihedral angles and relative edge-lengths. Element counts and total refinement times are
also shown.
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differences arising from particular implementation and/or design choices. Both algorithms were implemented in C++
and compiled as 64-bit executables. Both the Frontal-Delaunay and Delaunay-refinement algorithms have been imple-
mented as part of the JIGSAW meshing package, currently available by request from the author. These implementations
are referred to as JGSW-FD and JGSW-DR throughout, with the suffixes -FD and -DR denoting the ‘Frontal-Delaunay’
and ‘Delaunay-refinement’ variants, respectively.

In order to provide additional performance information, the well-known CGALMESH implementation [16] was also
included in a subset of the meshing comparisons. The CGALMESH algorithm was sourced from version 4.6 of the CGAL
package [38,39] and was compiled as a 64-bit library. The CGALMESH algorithm is referred to as CGAL-DR throughout
the following discussions, with the suffix -DR denoting ‘Delaunay-refinement’. All tests were run using a single core
of an Intel i7 processor. Visualisation and post-processing was completed using MATLAB.

6.1. Preliminaries

The various Delaunay-refinement and Frontal-Delaunay algorithms were used to mesh a pair of benchmark prob-
lems, including (i) a generic test-case presented in Figure 5, in which the performance of the new JGSW-FD algorithm
and the existing CGAL-DR implementation was compared, (ii) an additional biomedical test-case shown in Figure 6,
designed to contrast the performance of the JGSW-FD and JGSW-DR algorithms.

In all test cases, constant radius-edge ratio thresholds were specified for both surface and volume elements, such
that ρ̄ f = 1 and ρ̄τ = 2, corresponding to θmin ≥ 30◦ for surface facets. Additionally, non-uniform surface discretisa-
tion constraints were enforced, setting ε̄(x) = βh̄(x), with β = 1/4.

For all test problems, detailed statistics on element quality are presented, including histograms of element volume-
length ratios v(τ), dihedral-angles θ(τ), and relative edge-length h̄r. The element volume-length ratio is a robust
measures of element quality, where high-quality elements attain scores that approach unity. The relative edge-length
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is defined to be the ratio of edge-length ‖e‖ to desired edge-length h̄(xe), where xe is the edge midpoint. Relative
edge-lengths close to unity indicate conformance to the mesh-size function. High-quality surface triangles contain
angles of 60.0◦, while high-quality tetrahedrons contain angles approaching 70.5◦. Histograms further highlight the
minimum, maximum and mean values of the relevant distributions as appropriate.

6.2. A Comparison of JGSW-FD and CGAL-DR

The performance of the JGSW-FD and CGAL-DR algorithms was assessed using the generic ELEPHANT test-case.
Meshes were generated using uniform mesh-size constraints, with a small constant value, h̄(x) = α, imposed globally,
where α was chosen to be approximately 2% of the mean bounding-box dimension associated with the model. Due
to differences in the way that mesh-size constraints are interpreted by the two meshing packages, the mesh-size value
selected for the CGAL-DR algorithm was reduced by a factor of 4/3. This reduction accounts for the fact that in CGAL-DR,
mesh-size constraints are imposed with respect to the element circumradii, whereas the JGSW-FD algorithm treats the
mesh-size function in terms of element edge length. Both algorithms were found to produce meshes incorporating
consistent mean edge-lengths based on these modified mesh-size values. The CGAL-DR package does not support the
option to detect and refine sliver elements via additional refinement, so a volume-length threshold v̄ = 0 was imposed
to allow a fair comparison. Use of the non-linear sliver exudation and optimisation routines provided by the CGAL

package is beyond the scope of this paper.
The results in Figure 5 show that, overall, the new JGSW-FD algorithm generates a smaller mesh with improved

element quality characteristics and mesh-size conformance when compared to the CGAL-DR algorithm. Overall com-
putational expense for both algorithms was found to be similar. In terms of element counts, the new method leads
to a reduction of approximately 15%. Focusing on the distribution of element shape-quality explicitly, it can be seen
that the JGSW-FD algorithm achieves moderate improvements in mean volume-length and dihedral-angle distribu-
tions, with a subset of very high-quality elements (vτ ' 1, θτ ' 70◦) generated. Comparisons of distributions of
element relative-length reveal the largest differences, with the JGSW-FD algorithm showing significantly improved
conformance to the imposed mesh-size function, with a tight clustering of hr about 1. This result is not unexpected –
confirming that the new size-optimal off-centre point-placement scheme leads to high-quality vertex distributions that
follow the imposed sizing distribution. Recalling that v̄ = 0 in this test, meshes generated by both algorithms are seen
to contain a small number of low-quality sliver elements.

6.3. A Comparison of JGSW-FD and JGSW-DR

The performance of the JGSW-FD and JGSW-DR algorithms is next examined. While CGAL-DR and JGSW-DR are
representative of the same class of meshing algorithms, the benchmarks included in this section allow for an unbiased
comparison of the Frontal-Delaunay and Delaunay-refinement approaches, with both the JGSW-FD and JGSW-DR

algorithms benefiting from the same set of implementation design and optimisation decisions.
Meshes for the FOOT test-case were generated using uniform mesh-size constraints, with a small constant value,

h̄(x) = α, imposed globally, where α was chosen to be approximately 1% of the mean bounding-box dimension
associated with the model. Volume-length driven refinement was also used to eliminate low-quality sliver elements,
with v̄ = 0.1 imposed for both algorithms.

Consistent with previous results, Figure 6 shows that, overall, the new JGSW-FD algorithm generates a smaller
mesh with improved element quality characteristics and mesh-size conformance when compared to the JGSW-DR

algorithm. Use of the JGSW-FD algorithm is seen to reduce elements counts by approximately 8%. As per previous
analyses, the JGSW-FD algorithm is seen to achieve moderate improvements in mean volume-length and dihedral-angle
distributions, but significant improvements in terms of mesh-size conformance. Meshes produced by both algorithms
are seen to be free of low-quality sliver elements, with dihedral angles bounded above approximately 5◦ and below
170◦. These results confirm the effective use of volume-length driven refinement to suppress slivers.

7. Conclusions

A new Frontal-Delaunay meshing algorithm has been developed to generate Delaunay meshes for three-dimensional
domains bounded by smooth 2-manifold surfaces. The new algorithm is based on the so-called restricted Delaunay
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Fig. 6. Meshes for the FOOT test-case, showing output for the JGSW-FD and JGSW-DR algorithms. Detailed mesh statistics are shown including
normalised histograms of elements volume-length ratios, dihedral angles and relative edge-lengths. Element counts and total refinement times are
also shown.
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paradigm, in which a surface triangulation Del |Σ(X), and a volume mesh Del |Ω(X) is constructed as a subset of a full-
dimensional Delaunay tessellation Del(X). Through the introduction of new Voronoi-type off-centre point-placement
schemes for the refinement of surface and volume elements, the new Frontal-Delaunay algorithm has been shown
to combine the advantages of conventional advancing-front and Delaunay-refinement techniques. Specifically, it has
been shown that this new hybrid approach allows for the insertion of both shape- and size-optimal Steiner points,
and that the resulting surface and volume meshes are of very high-quality. It has been demonstrated that the new
algorithm outperforms conventional Delaunay-refinement techniques, generating meshes of reduced size and with
improved quality and grading statistics. Importantly, it has also been demonstrated that the new Frontal-Delaunay
algorithm satisfies the same set of constraints as conventional Delaunay-refinement approaches, adhering to limits on
element radius-edge ratios, mesh-size, surface discretisation error and mesh topology. It is expected that applications
that place a premium on high mesh-quality, including problems in computational fluid dynamics and/or structural
analysis, may benefit from the new Frontal-Delaunay technique. Future work will focus on providing support for an
extended class of geometry representations, including domains containing sharp features.
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[4] J. Schöberl, NETGEN: An Advancing Front 2D/3D Mesh Generator based on Abstract Rules, Computing and Visualization in Science 1
(1997) 41–52.

[5] D. Rypl, Approaches to Discretization of 3D Surfaces, in: CTU Reports, volume 7, CTU Publishing House, Prague, Czech Republic, 2003.
[6] J. Schreiner, C. E. Scheidegger, S. Fleishman, C. T. Silva, Direct (Re)Meshing for Efficient Surface Processing, Computer Graphics Forum 25

(2006) 527–536.
[7] L. P. Chew, Guaranteed-quality Triangular Meshes, Technical Report, Cornell University, Department of Computer Science, Ithaca, New York,

1989.
[8] J. Ruppert, A New and Simple Algorithm for Quality 2-dimensional Mesh Generation, in: Proceedings of the fourth annual ACM-SIAM

Symposium on Discrete algorithms, SODA ’93, 1993, pp. 83–92.
[9] A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation, Journal of Algorithms 18 (1995) 548 – 585.

[10] J. R. Shewchuk, Delaunay Refinement Mesh Generation, Ph.D. thesis, Pittsburg, Pennsylvania, 1997.
[11] J. R. Shewchuk, Tetrahedral Mesh Generation by Delaunay Refinement, in: Proceedings of the fourteenth annual symposium on Computational

geometry, SCG ’98, ACM, New York, NY, USA, 1998, pp. 86–95. doi:10.1145/276884.276894.
[12] S. Cheng, T. Dey, Quality Meshing with Weighted Delaunay Refinement, SIAM Journal on Computing 33 (2003) 69–93.
[13] S. W. Cheng, T. K. Dey, E. A. Ramos, Delaunay Refinement for Piecewise Smooth Complexes, Discrete & Computational Geometry 43 (2010)

121–166.
[14] J. D. Boissonnat, S. Oudot, Provably Good Surface Sampling and Approximation, in: ACM International Conference Proceeding Series,

volume 43, 2003, pp. 9–18.
[15] J. D. Boissonnat, S. Oudot, Provably Good Sampling and Meshing of Surfaces, Graphical Models 67 (2005) 405–451.
[16] C. Jamin, P. Alliez, M. Yvinec, J. D. Boissonnat, CGALmesh: A Generic Framework for Delaunay Mesh Generation, Technical Report, INRIA,

2013.
[17] H. Edelsbrunner, N. R. Shah, Triangulating Topological Spaces, International Journal of Computational Geometry & Applications 7 (1997)

365–378.
[18] S. W. Cheng, T. K. Dey, J. R. Shewchuk, Delauay Mesh Generation, Taylor & Francis, New York, 2013.
[19] J. R. Shewchuk, General-dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties, Discrete &

Computational Geometry 39 (2008) 580–637.
[20] H. Si, Adaptive Tetrahedral Mesh Generation by Constrained Delaunay Refinement, International Journal for Numerical Methods in Engineer-

ing 75 (2008) 856–880.
[21] S. W. Cheng, T. K. Dey, J. A. Levine, A Practical Delaunay Meshing Algorithm for a Large Class of Domains, in: Proceedings of the 16th

international meshing roundtable, Springer, 2008, pp. 477–494.
[22] S. Oudot, L. Rineau, M. Yvinec, Meshing Volumes Bounded by Smooth Surfaces, in: Proceedings of the 14th International Meshing

Roundtable, Springer, 2005, pp. 203–219.
[23] A. Bowyer, Computing Dirichlet Tessellations, The Computer Journal 24 (1981) 162–166.
[24] P. Alliez, S. Tayeb, C. Wormser, AABB Tree, Technical Report, 2009.
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